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Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder that im-
pairs memory and cognitive function. Dysregulation of the amyloid-β (Aβ) 
pathway and amyloid plaque accumulation in the brain are hallmarks of AD. 
Aducanumab is a human, immunoglobulin gamma 1 monoclonal antibody tar-
geting aggregated forms of Aβ. In phase Ib and phase III studies, aducanumab 
reduced Aβ plaques in a dose dependent manner, as measured by standard up-
take value ratio of amyloid positron emission tomography imaging. The goal of 
this work was to develop a quantitative systems pharmacology model describing 
the production, aggregation, clearance, and transport of Aβ as well as the mecha-
nism of action for the drug to understand the relationship between aducanumab 
dosing regimens and changes of different Aβ species, particularly plaques in the 
brain. The model was used to better understand the pharmacodynamic effects 
observed in the clinical trials of aducanumab and assist in the clinical develop-
ment of future Aβ therapies.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
A phase Ib trial and two identically designed phase III trials with aducanumab in 
patients with early Alzheimer's disease (AD) showed a dose-dependent reduction 
of amyloid-β (Aβ) plaque in the brain.
WHAT QUESTION DID THIS STUDY ADDRESS?
A quantitative systems pharmacology model that integrates the current under-
standing of the Aβ pathway and the mechanism of action of aducanumab was 
developed to understand the relationship between dosing regimens and changes 
of different Aβ species, particularly plaque in the brain.
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INTRODUCTION

Alzheimer's disease (AD) is the most common cause of 
dementia, which is associated with impairment and pro-
gressive loss of memory and cognitive functions. AD pro-
gresses slowly, and its prevalence increases with age.1 As 
the disease advances, the decline of cognitive and func-
tional abilities leads to a loss of independence for patients. 
Patients’ disability and dependence during the long dura-
tion of illness contributes significantly to the public health 
impact of AD.1

AD is characterized primarily by two neuropatho-
logic hallmarks: amyloid plaques containing amyloid-β 
(Aβ) peptide in the extracellular space of the brain and 
neurofibrillary tangles composed of tau localized inside 
neurons.2 Although evidence suggests that tau pathology 
plays a key role in neurodegenerative process and exhibits 
stronger correlation with clinical symptoms in AD,3–5 it 
is believed that the deposition of Aβ in the brain paren-
chyma is a crucial initial step in the cascade that precedes 
the development of tau pathology and ultimately leads to 
the development of AD.6 AD has been viewed as a con-
tinuum spanning from preclinical (asymptomatic with 
pathology) to clinical phases (symptomatic),7,8 and it is 
suggested that Aβ deposition takes more than 2 decades 
before symptoms are observed.9

A number of therapeutics intended to slow the dis-
ease progression, including those targeting Aβ pathway, 
have failed to show clinical benefits.10 Aducanumab is a 
human, immunoglobulin gamma 1 (IgG1) monoclonal 
antibody (mAb) that selectively targets aggregated forms 
of Aβ, including soluble oligomers and insoluble fibril-
lar forms, with much weaker binding to monomers.11–13 
In mice, administration of aducanumab enhanced 
recruitment of microglia to Aβ plaques, which sug-
gested that antibody-dependent cellular phagocytosis 
(ADCP) likely contributes to plaque clearance induced 
by aducanumab.11 Moreover, a phase Ib trial and two 
identically designed phase III trials with aducanumab 
administered intravenously (i.v.) up to 10 mg/kg every 

4 weeks (q4w) in patients with early AD reported dose-
dependent plaque reduction.11,14 Statistically significant 
improvement on clinical end points was also found in 
the high-dose group from the phase Ib and one of the 
phase III trials but not the other.14,15 The two phase III 
trials were terminated early based on prespecified in-
terim analyses that suggested futility; however, the data 
were analyzed according to the prespecified statisti-
cal analysis plan. Aducanumab is the first AD therapy 
approved by the US Food and Drug Administration to 
reduce a defining pathophysiological feature of the dis-
ease, brain Aβ plaques.14

Quantitative systems pharmacology (QSP) modeling, 
as an emerging field in the biotech and pharmaceutical 
industries, formulates mathematical models that integrate 
mechanistic understanding of biological processes at dif-
ferent levels and data from a variety of sources, such as in 
vitro, animal, and clinical data, to understand how com-
ponents interact and contribute to the pharmacological ef-
fects of drugs.16–19 QSP modeling is an emerging tool with 
predictive capabilities and complements the widely used 
population pharmacokinetic (PK)/pharmacodynamic 
(PD) modeling in drug development.

Several QSP models characterizing the Aβ cascade have 
been developed to understand the biological process in 
response to therapeutic modulation.20–23 In this article, a 
QSP model describing aducanumab, an anti-Aβ agent spe-
cifically targeting aggregated Aβ, is presented to enhance 
our understanding of the pharmacological effects of adu-
canumab in AD, particularly the relationship between 
dosing regimens and Aβ plaque reduction. The model 
integrates the current understanding of the Aβ pathway, 
the disease, and the mechanism of action of aducanumab. 
It was calibrated and then validated with available clin-
ical data. The model was subsequently used to identify 
sensitive parameters and knowledge gaps and to predict 
changes of brain Aβ species including plaques with vari-
ous dosing regimens, which will provide insights into the 
therapeutic effects of aducanumab and inform the future 
clinical study designs.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Increasing aducanumab dose from 1 to 10 mg/kg every 4 weeks not only leads 
to faster plaque reduction but also results in larger plaque reduction at steady 
state. The total dose regardless of regimens determines the plaque reduction with 
aducanumab.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The model can be used to understand the results with aducanumab and other Aβ 
therapeutics and help find the right dose and design future AD therapies.
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METHODS

Model construction

The model was constructed to include the current under-
standing of Aβ biology for AD and the mechanism of action 
of aducanumab. The schematics is depicted in Figure 1. 
Aβ monomer is produced via sequential cleavage of the 
amyloid precursor protein (APP). APP is first cleaved by  
β-secretase to form C terminal fragment of amyloid β pro-
tein precursor, which is then cleaved by γ-secretase to form 
an Aβ monomer. The γ-secretase cleavage can happen at 
different sites within the Aβ sequence, leading to different 
Aβ isoforms, among which Aβ1-40 and Aβ1-42 are the two 
most prominent peptides found in AD. The monomers in 
the model represent the sum of Aβ1-40 and Aβ1-42, which 
aggregate to form soluble oligomers, with further aggre-
gation to form insoluble fibrils.24,25 Overall, the model 
includes three different pools of Aβ species: monomers, 
soluble oligomers, and insoluble plaques.

The model primarily comprises three compartments: 
plasma, cerebrospinal fluid (CSF), and brain interstitial fluid 
(ISF). An additional peripheral compartment was imple-
mented only to describe aducanumab PK. In the model, Aβ 
production and degradation occur in brain ISF and plasma, 
monomer aggregation occurs in all three compartments, and 
oligomer aggregation to form plaque only happens in brain 
ISF. The mechanism of action of aducanumab accounted for 

in the model includes drug distribution and clearance, bind-
ing to different Aβ species, and the ability to induce ADCP to 
clear Aβ aggregates in brain ISF. In addition, the model incor-
porates intercompartment transport of soluble Aβ monomers 
and oligomers, drug and soluble drug–Aβ complexes.

Model calibration and validation

The model was informed by a large pool of literature 
and experimental data on Aβ biology and therapeutics. 
It was calibrated to simultaneously capture all of the 
data summarized in Table S1, including concentrations 
of Aβ monomer, oligomer, and plaque in different com-
partments prior to treatment, in vivo Aβ kinetics in CSF, 
aducanumab PK and plasma total Aβ concentration from 
the single-ascending dose (SAD) study, and brain plaque 
data measured by amyloid positron emission tomography 
(PET) imaging from the placebo-controlled period of the 
phase Ib multiple-ascending dose (MAD) study. Model pa-
rameters that were not constrained by these data were in-
formed by literature knowledge (see Table S2 for details).

After the final parameter values were identified 
through model calibration, the following data sets were 
used as model validation to compare against model simu-
lations without further modification of parameter values: 
(i) plasma PK data from the MAD study, (ii) standard up-
take value ratio (SUVR) data at Year 2 from the long-term 

F I G U R E  1   Schematic for the quantitative systems pharmacology (QSP) model of amyloid-β (Aβ) pathway with aducanumab. The model 
describes Aβ kinetics, including production, degradation, and aggregation; aducanumab kinetics, including pharmacokinetics (PK); binding 
to Aβ monomer, oligomer, and plaque and ability to induce antibody-dependent cellular phagocytosis (ADCP) to clear Aβ aggregates; and 
the transport of soluble Aβ species, drug, and soluble drug–Aβ complexes between compartments. Abeta, amyloid-β; APP, amyloid precursor 
protein; BACE, β-secretase; sBACE, soluble β-secretase; CSF, cerebrospinal fluid; CTFβ, amyloid β protein precursor; ISF, interstitial fluid
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extension (LTE) of the MAD study, and (iii) 1-year SUVR 
data from the dose titration cohort in the MAD study.

SUVR data processing

SUVR is a widely used approach to quantify PET imaging 
signals and is defined as the ratio of radioactivity in a re-
gion of interest to that in a reference region. In aducanumab 
studies, Aβ burden in the brain was measured by PET with 
a 18F-florbetapir ligand.11 In the model, the percentage 
change of plaque concentration relative to pretreatment 
was compared with the percentage change of composite 
SUVR from baseline, which were calculated as follows:

where the SUVR cutoff value was set to be 1.0 in the 
model as the value represents the measured region has 
the same signal as the reference region that has no plaque. 
It is lower than the cutoff value of 1.10 that discriminates 
between AD positive and negative for PET with the 18F-
florbetapir ligand,26 assuming that a small amount of Aβ 
aggregates also exist in the brain of AD-negative (healthy) 
subjects.

Group mean of composite SUVR data from the 1-year 
placebo-controlled period of the MAD study was used for 
model calibration, whereas data at Year 2 from the LTE of 
the MAD study was used for model validation.

Sensitivity analysis

To identify parameters whose values have a consider-
able impact on the model output of plaque reduction 
with aducanumab treatment, sensitivity analysis was 
performed. One parameter was changed at a time by 
a 10-fold increase or decrease from the nominal value, 
whereas other parameters were fixed to their nominal 
values.

Software

The model was implemented using KroneckerBio 
v0.5.1.1. KroneckerBio is open-source software (https://

github.com/krone​ckerbio). The version was tested prior 
to use and was archived by Applied BioMath (Concord, 
MA). Simulations were performed using MATLAB 2017 
(Mathworks, Natick, MA).

RESULTS

Model calibration

Compelling evidence indicates that plaque accumulation 
in the brain is near plateau before cognitive impairment 
occurs27,28; thus, it is reasonable to assume that prior to 
therapeutic intervention, Aβ plaque has reached steady 
state in patients with early symptomatic AD in the model. 
The model outputs at steady state without therapeutics 
were calibrated to match the baseline concentrations of 
different Aβ species in brain, CSF, and plasma reported or 

inferred from the literature. In plasma and CSF, Aβ exclu-
sively exists in soluble forms as monomer or oligomer.29–32 
Aβ monomer concentration was estimated to be approx-
imately 0.1  nM in plasma29 and approximately 3  nM in 
CSF.30–32 In brain ISF, Aβ exists in all three forms, of 
which the majority belong to the pool of plaque. Aβ solu-
ble oligomer concentration was estimated to be approxi-
mately 370 nM, and insoluble plaque concentration was 
approximately 5500 nM in brain ISF.33,34 In addition to the 
baseline concentrations of different Aβ species, the model 
was calibrated to describe the Aβ dynamics data in CSF 
(Figure S1) as measured by the stable isotope labeling ki-
netic (SILK) experiment (details of the simulation of SILK 
in the Supplementary Material) in patients with AD.35

The model was also calibrated to adequately describe 
aducanumab plasma PK (Figure  2a), CSF to plasma 
drug concentration ratio at steady state (Figure S2), 
and total Aβ data (Figure  2b) with i.v. administration 
of aducanumab across a range of doses from 0.3  mg/
kg to 60  mg/kg from the SAD study in patients with 
AD.29 Aducanumab PK characteristics were compara-
ble with a typical IgG1  mAb and were well described 
by a two-compartment PK model.36 The CSF to plasma 
concentration ratio was approximately 0.5%, as adu-
canumab appears to have better brain penetration than 
other mAbs.11 The plasma total Aβ measures both free 
Aβ and drug-bound Aβ and increases post-aducanumab 
dosing due to the Aβ-drug complex having slower clear-
ance compared with free Aβ. This effect is minimal with 
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doses up to 30 mg/kg and becomes only apparent at the 
highest dose of 60  mg/kg, which is expected based on 
extremely weak binding between aducanumab and Aβ 
monomers. Finally, the model was calibrated to capture 
the brain plaque data in patients with AD measured by 
amyloid PET imaging during the first year (i.e., 1-year 
SUVR data) with aducanumab dosing of 1  mg/kg to 
10 mg/kg q4w from the placebo-controlled period of the 
MAD study11 (Figure 2c). The binding affinity between 
drug and plaque was estimated to be 20 nM to capture 
the SUVR data, which is different from the reported in 
vitro measurement.11 This change is discussed in the 
Supplementary Material. The final model parameter val-
ues are listed in Table S2.

Model validation

Data that became available after the initial model devel-
opment were used for model validation. Because PK data 
from the SAD study were used for model calibration, PK 
from multiple q4w i.v. doses of aducanumab was used 
for validation. Model simulations with multiple-dose PK 
agreed well with the PK data from the MAD study (Figure 
S3). Moreover, plaque reduction with a longer treatment 
duration and with a new titration dosing regimen were 
simulated and compared against SUVR data that were 
not used for model calibration. As shown in Figure  3a, 
the model predictions of plaque reduction with a 2-year 
treatment matched well with the mean SUVR data at 
Year 2 (Week 110) from the LTE of the MAD study. The 
subjects from the 1 mg/kg group after 1 year of treatment 
were switched to the 3 mg/kg group during the LTE. The 
model accurately predicted the increased reduction in 
SUVR for this group and continued reduction in SUVR 

for other groups at the end of Year 2. Furthermore, there 
was a dose titration cohort with dosing q4w 1 mg/kg for 
two doses followed by 3 mg/kg for four doses, 6 mg/kg for 
five doses, and 10 mg/kg for two doses.37 The model was 
able to predict the plaque reduction at the end of 1 year 
with this new dosing regimen (Figure 3b). These results 
demonstrate the predictive power of the model.

Model analysis

The final model was used to simulate plaque reduction 
with long-term treatment of 1–10  mg/kg aducanumab 
q4w up to 10 years (Figure 4a). The results showed that 
a higher dose led to a faster rate of plaque reduction and 
a lower steady-state level, which suggested that the drug-
induced clearance process via ADCP is not saturated 
within the dose range tested.

Sensitivity analysis of the model was implemented to 
identify key parameters impacting plaque reduction with 
aducanumab treatment over 10 years. Figure S4 shows the 
results for the sensitive parameters including those related 
to drug brain penetration, drug binding to plaque, and 
drug-induced ADCP as well as the endogenous plaque 
turnover rate. Almost all of them except the endogenous 
plaque turnover rate affect both the initial slope and the 
steady state of plaque reduction. In contrast, the endog-
enous plaque turnover rate has a minimal influence on 
the initial slope, but has a significant impact on plaque 
reduction at steady state, suggesting that this parameter is 
not constrained by the 1-year SUVR data.

To explore the impact of this parameter, model calibra-
tion was performed again by deliberately fixing the value 
of the endogenous clearance rate at fivefold from its nom-
inal value and adjusting additional parameters (Table S3) 

F I G U R E  2   Model calibration to aducanumab pharmacokinetic (PK) and pharmacodynamic data. Model simulations are overlaid with 
plasma PK and plasma amyloid-β (Aβ) data from a single-ascending dose study with aducanumab dosing from 0.3 to 60 mg/kg (a, b), and 
1-year standard uptake value ratio data from a placebo-controlled period in a phase Ib multiple-ascending dose study with aducanumab 
dosing from 1 to 10 mg/kg every 4 weeks (c). In panel b, the red cross symbols represent mean of plasma Aβ data from 60 mg/kg, and the 
blue open circles represent data from 0.3 mg/kg. Observed data from in-between doses were indistinguishable from data from 0.3 mg/kg and 
hence were not shown. Note the baseline Aβ data for 60 mg/kg was higher than the other dose groups. The level of β-secretase in the model 
was adjusted only when simulating this particular dose group of this study to match the baseline
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so that the model maintained fitting to all data described 
in Table S1 including the SUVR data up to 1 year. Fivefold 
was chosen to ensure the apparent change of plaque ki-
netics. This new parameter set was called an alternative 
parameter set with a faster endogenous plaque turnover 
rate. In the absence of therapeutic, it takes approximately 
25 years versus approximately 5 years for plaque to reach 
steady state prior to treatment in the model with the nom-
inal parameter set (the final model) compared with the 
alternative parameter set, respectively.

Although the two parameter sets yield similar SUVR 
changes up to 1  year, they resulted in different plaque 
reduction with an extended treatment period of adu-
canumab. Figure  4a,b shows the simulations of plaque 
reduction with 10-year treatment overlaid with 2-year 
SUVR data. The model with the nominal parameter 
set predicted SUVR data accurately at Year 2, whereas 
the model with the alternative parameter set did not. 
Moreover, at the same dose, the model predicted a larger 
plaque reduction at steady state with the slower plaque 
turnover rate compared with the faster plaque turnover 
rate, which are attributed to several reasons. As illustrated 
in Figure 4e, the plaque concentration at steady state prior 
to treatment results from a balance of oligomer aggrega-
tion and plaque clearance. With aducanumab binding to 
plaque and inducing ADCP, it increases plaque clearance, 
which shifts the steady-state plaque concentration to a 
lower level, resulting in plaque reduction from baseline. 
The plaque reduction at steady state is determined by the 
difference between the endogenous clearance rate and 

the drug-induced clearance rate of plaque. Because the 
drug-induced clearance rate must remain the same to cap-
ture 1-year SUVR data (Figure 4a,b), slower endogenous 
clearance leads to a larger difference of the two rates and 
hence more plaque reduction with long-term treatment. 
In addition, the simulations of plaque reduction with  
1-year treatment followed by 9-year recovery showed that 
the slower plaque turnover rate leads to slower recovery 
(Figure 4c,d), which suggested that the SUVR data after 
treatment discontinuation can inform this key parameter.

Although plaque accumulation is one of the significant 
characteristics of AD, evidence indicates that soluble Aβ 
oligomers are also neurotoxic species in AD.38 However, 
currently it is challenging to measure oligomeric species 
in humans directly. Therefore, the model was leveraged 
to predict the oligomer changes with 10-year treatment of 
aducanumab. The model assumed that aducanumab can 
clear soluble oligomer through the ADCP process with the 
same reaction rates as those for plaque. The model predicted 
a dose-dependent reduction of oligomer with 1–10 mg/kg 
q4w doses of aducanumab (Figure 5). However, because of 
the faster endogenous turnover of oligomer compared with 
plaque, the percentage reduction of oligomer from baseline 
at steady state was less than that of plaque at the same dose. 
Here again, the endogenous turnover rate influenced the re-
duction at steady state in oligomeric species.

Finally, the calibrated and validated model was used to 
explore alternative dosing regimens; i.v. dosing at a higher 
level, but less frequently than 10  mg/kg q4w, including 
20 mg every 8 weeks, 30 mg/kg every 12 weeks, and 60 mg/

F I G U R E  3   Model validation with additional standard uptake value ratio (SUVR) data with aducanumab. Model simulations are 
overlaid with SUVR data from a phase Ib multiple-ascending dose study with aducanumab dosing from 1 to 10 mg/kg every 4 weeks (q4w) 
(a) and from the dose titration cohort during a placebo-controlled period (b). In panel a, dot symbols represent data for model calibration 
from a placebo-controlled period, and square symbols represent data for model validation from Week 110 in a long-term extension (LTE) 
where patients continued receiving the same dose except patients in 1 mg/kg receiving 3 mg/kg in the LTE. In panel b, square symbols 
represent data for model validation from the dose titration cohort with the following dosing schedule: dosing q4w 1 mg/kg for two doses + 
3 mg/kg for four doses + 6 mg/kg for five doses + 10 mg/kg for two doses
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kg every 24 weeks, were simulated for 10 years and shown 
to have similar plaque reduction (Figure 6). This suggested 
that different combinations of dosing frequency and dose 

level that lead to equivalent total dose resulted in similar 
plaque reduction. The results are attributed to the drug-
induced plaque clearance being slower than the drug PK; 

F I G U R E  4   Model predictions and analysis of the effect of aducanumab on plaque reduction in the long term. Simulations of plaque 
reduction with 10-year treatment of aducanumab dosing from 1 to 10 mg/kg every 4 weeks (q4w) with a nominal parameter set (slower 
endogenous turnover) (a) and an alternative parameter set (faster endogenous turnover) (b). The simulations are overlaid with 2-year 
standard uptake value ratio data (dot symbols indicate placebo-controlled period, and square symbols indicate long-term extension [LTE]) 
from a phase Ib multiple-ascending dose study with aducanumab from 1 to 10 mg/kg every 4 weeks (q4w). Note that LTE data for the 1 mg/
kg group are not shown here as patients in 1 mg/kg switched to 3 mg/kg in LTE. Model predictions of plaque recovery after the 1-year 
treatment of aducanumab dosing from 1 to 10 mg/kg q4w with a nominal parameter set (slower endogenous turnover) (c) and an alternative 
parameter set (faster endogenous turnover) (d). A schematic to illustrate plaque kinetics in the model (e). kADCP, drug-induced clearance rate 
of plaque; kclearAplaque, endogenous clearance rate of plaque
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therefore, the plaque reduction with aducanumab is mostly 
determined by the total dose (or the area under the curve 
[AUC] of drug exposure) regardless of dosing regimens.

DISCUSSION

In this work, we developed a QSP model for Aβ kinet-
ics and the mechanism of action of aducanumab, which 
adequately described the observed PK and PD data in 

clinical trials and the literature data of the Aβ pathway. 
The model was able to predict the plaque reduction as 
measured by Aβ PET SUVR with longer treatment du-
ration and with dose titration, which were not used 
for model calibration. The validated model was used 
to predict the drug effect on Aβ plaques and oligomers 
with various dosing regimens. The model suggested that 
increasing the dose from 1 to 10 mg/kg q4w of aduca-
numab not only leads to faster plaque reduction but 
also results in larger plaque reduction at steady state. 
Moreover, the total dose (or AUC of drug exposure) de-
termines the plaque reduction with aducanumab, which 
is mostly attributed to the drug-induced plaque clear-
ance being much slower than the drug PK. This find-
ing provides a base for dose adjustment for individual 
patients in the future.

Following the sensitivity analysis of the model, we 
identified that the endogenous plaque turnover rate is a 
key parameter for predicting plaque reduction with long-
term treatment of aducanumab. It should be noted that 
this sensitivity analysis is one-at-a-time local sensitivity 
analysis, and the results can be further verified by global 
sensitivity analysis. Despite this limitation, the further 
analysis of this parameter showed that even though rel-
ative short-term SUVR data such as 1-year data did not 
yield accurate estimation of this parameter, SUVR data 
from longer treatment or the recovery phase could be in-
formative. This also suggested that individual variability 
in plaque endogenous turnover rate might impact the 
long-term treatment effects with aducanumab or other 
anti-Aβ therapeutics. As natural plaque clearance is medi-
ated via phagocytosis,39 potentially the differences in the 
number or effectiveness of microglial cells among patients 
could contribute to this variability.

F I G U R E  5   Model predictions of the effect of aducanumab on soluble oligomer in the long term. Simulations of soluble oligomer 
reduction with 10-year treatment of aducanumab dosing from 1 to 10 mg/kg every 4 weeks (q4w) with a nominal parameter set (slower 
endogenous turnover) (a) and an alternative parameter set (faster endogenous turnover) (b). Color “band” reflects the fluctuation of 
concentration profiles attributed to a relatively fast rebound of soluble oligomer with q4w dosing

F I G U R E  6   Model predictions of plaque reduction with 
aducanumab dosing regimens that have an equivalent total 
dose. Simulations of plaque reduction with 10-year treatment of 
aducanumab with 10 mg/kg every 4 weeks (Q4W), 20 mg/kg every 
8 weeks (Q8W), 30 mg/kg every 12 weeks (Q12W), and 60 mg/
kg every 24 weeks (Q24W), which have an equivalent total dose. 
Plaque reduction profiles with these dosing regimens overlap with 
each other
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We modeled Aβ aggregation processes as Aβ transport 
between different pools. Other complex models exist in the 
literature to describe Aβ aggregation,22,40 but they heavily 
rely on measurements from in vitro settings, which might 
not translate to in vivo settings. One could think that the 
microscopic processes described in these models lead to 
the distribution of Aβ into the three pools described in our 
model. Our approach circumvents the need to model dif-
ferent sizes of oligomers and plaques but still accounts for 
mass balance and different time scales for soluble Aβ spe-
cies and plaque, allowing us to understand their responses 
with therapeutics. On the other hand, not modeling the 
detailed aggregation processes, including nucleation and 
elongation, is a limitation of this model. In addition to 
inducing ADCP, aducanumab has been shown to prevent 
secondary nucleation and inhibition of oligomer forma-
tion.12 Without these microscopic processes specifically 
incorporated in the model, we might underestimate the 
effect of aducanumab on oligomer reduction. Meanwhile, 
inhibition of oligomers reduces the plaque formation. 
With this mechanism, the rate of plaque reduction is 
driven by its endogenous clearance rate. On the contrary, 
the ADCP mechanism reduces plaque by accelerating the 
clearance. Based on our model simulations, the endog-
enous clearance is much slower than the plaque reduc-
tion observed with aducanumab, suggesting that ADCP is 
likely to drive the main effect of aducanumab on plaque 
reduction at least in the early years of treatment.

Currently, we combined Aβ1-40 and Aβ1-42 into a sin-
gle pool for the following reasons: (1) our goal is to un-
derstand Aβ kinetics and the effects of aducanumab on 
macroscopic level; (2) in vitro binding data and plasma Aβ 
data with aducanumab indicate that aducanumab does 
not differentially bind Aβ1-40 and Aβ1-42

11; and (3) Aβ1-40 
and Aβ1-42 dynamics in CSF measured by SILK experi-
ments are similar.35 For future work, the current model 
can be refined to describe Aβ1-40 and Aβ1-42  separately. 
The growing body of evidence suggests that Aβ1-42 is more 
prone to aggregation and is the primary component of am-
yloid plaques, although Aβ1-40 is more abundant in CSF 
and plasma.29,31 Therefore, it is possible that Aβ1-40 and 
Aβ1-42 kinetics could be affected differently with therapeu-
tics in CSF41 and brain ISF despite their similar response 
in plasma. Moreover, it might be important to model 
Aβ1-40 and Aβ1-42 separately for the disease progression, as 
natural history data suggest that they change differently 
over time.28

The endogenous plaque clearance was assumed to be 
very slow in the model based on natural history studies 
showing that SUVR increases over 2 decades before it 
reaches the steady state.27 However, the current model 
was not developed to capture the disease onset or progres-
sion, which can be an area of future model development. 

Another potential area for future investigation would be 
to link biomarkers such as plaque reduction in the cur-
rent model to cognitive function change so that the model 
can make predictions on clinical endpoints. Removal of 
Aβ plaque with aducanumab has been shown to impact 
tau in CSF and the brain,42 which might contribute to 
clinical improvement in patients with AD. Therefore, 
expanding the model to include tau mechanisms in the 
future could help evaluate the interaction between the 
two pathways and the potential clinical benefit for com-
bination therapy.

In conclusion, a QSP model including biology of the 
target pathway and mechanisms of action of the drug can 
be a powerful translational tool to incorporate in preclin-
ical and early clinical data to guide later stage clinical 
development. The Aβ–aducanumab QSP model provided 
a priori predictions on SUVR changes with new dosing 
regimens beyond the current treatment duration, and the 
effects of aducanumab on soluble oligomer which is cur-
rently challenging to measure in humans.
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